gated_reference.md 7/6/2023

GATE DAEMON REFERENCE

This document describes the "Gate Daemon" service ("gated"), a daemon managed by
"systemd"/"systemctl".

Theory of Operation
Overview

GATE ("General Architecture for Text Engineering") is a system written in Java that provides rich and robust
text processing capabilities.

The gated service is a Java process that provides client access to a single GATE instance running in a single
Java VM ("JVM").

NOTE: The gated service provides access to a single GATE instance on a single JVM. The gated service has
no representation for a "user". It does not support parallel operations. The "GATE Developer" and "GATE
Cloud" products from the University of Sheffield are more appropriate for team and parallel use.

The gated service has been exercised with clients written in Python and NodeJS, as well as command-line
clients that use wget like described in this document.

System Architecture and Components

The components described here assume an Amazon Web Services ("AWS") EC2 instance running a current
version of Rocky Linux.

» GATE (Java application)
GATE itself is an instance of the standard gate-core installed and running on a JVM running Java 1.8
» GateDaemon (System service)

GateDaemon is a system service named gated managed by systemctl. It listens on a dedicated
TCP port (7499). All interactions with GateDaemon are performed by https exchanges using the
specified port.

GateDaemon is written in Java and directly uses GATE classes, methods, and behavior.

Lifecycle of a typical gated session

A client interaction with gated has three distinct phases:

1. Setup
2. Use
3. Cleanup

These occur in a single "session".

1/10

gated_reference.md 7/6/2023

NOTE: The gated service provides no representation or behavior for a session. Each client of gated must
manage their own session behavior.

During the "Setup" phase, a client loads one or more plugin instances.

During the "Use" phase, the client creates or loads needed resources and then performs operations on
those resources.

During the "Cleanup" phase, the client invokes housekeeping endpoints that free resources in the backend
and that reset the state of the gate service to discard any cached entities.

Each endpoint used during "Setup" and "Cleanup" is idempotent. It is therefore good practice to call the
"Cleanup" endpoints during "Setup" to handle the unlikely event that any of gate, gated, or GATE were not
properly cleaned up at the end of a prior session.

GATE (core) Resources
This section describes the GATE core resources supported and used by the gate service.
Corpus

A "Corpus" is a CREOLE resource that aggregates one or more instances of "Document” for use by a
"Pipeline"

Document

A "Document" is a CREOLE resource that provides access to a specific text document.
Pipeline

A gate "Pipeline" is a "SerialAnalyserController™" in GATE.

From the GATE documentation:

A [Pipeline] opens each document in the corpus in turn, sets that document as a runtime parameter
on each PR, runs all the PRs on the corpus, then closes the document.

Plugin
A "Plugin" is:
a directory or JAR file containing an XML configuration file called creole.xml at its root
The gate service assumes the use of the ANNIE plugin.
ProcessingResource

A "ProcessingResource" is a CREOLE resource associated with a Plugin that provides specific behavior
determined by run-time parameters defined for that ProcessingResource.

gated Resources

This section enumerates and briefly describes the Java classes that comprise the gated system service.
2/10

gated_reference.md 7/6/2023

GateServer

The GateServer class directs the validation, dispatch, and response for each https interaction.

GateServer supports six https endpoints and two development endpoints, for a total of eight. The eight
endpoints are as follows:

1.

hello

The hello development endpoint answers "Hello World" to any request. It is used to confirm the
roundtrip path through gated itself.

. echo

The echo development endpoint its query string to any request. It is used to confirm the argument
handling of gated itself.

. plugin

The plugin endpoint is used to load a specified Maven plugin.

. cleanup

The cleanup endpoint is used to empty the several caches of gated as well as invoke needed
cleanup behavior in GATE.

. document

The document endpoint provides behavior for loading, accessing, and cleaning up instances of GATE
Document.

. corpus

The corpus endpoint provides behavior for loading, accessing, and cleaning up instances of GATE
Corpus.

.pr

The pr endpoint provides behavior for loading instances of ProcessingResource.

. pipeline

The pipeline endpoint provides behavior for creating, loading, configuring, running, and storing
instances of Pipeline (ConditionalSerialAnalyserController).

Each endpoint is supported by a pair of classes -- a handler that extends GateHandler and a worker that
extends GateWorker.

GateHandler

GateHandler is an abstract class that provides behavior shared by the handler of each endpoint.

The shared behavior includes methods that parse and dispatch specific operations, as well as catch and

handle exceptions thrown by the worker.

3/10

gated_reference.md 7/6/2023

The following classes extend GateHandler and provide access to the worker of each

o CleanupHandler
o CorpusHandler

« DocumentHandler
o EchoHandler

o HelloHandler

o PipelineHandler
« PRHandler

An instance of a GateHandler descendant catches instances of GateDaemonException,
GateException, and IOError thrown by its worker while executing an operation. The information from
each exception is gathered in the returnResponse of the worker so that it may be returned as a 200
response with an isSuccessful value of false.

Any other worker exception causes a 500 ("Server Error") response from GateServer.

This means that a non-200 response from GateServer indicates an error in the GateDaemon itself or an
error in the JVM -- most GATE errors cause a GateException to be thrown by GATE (and caught by
GateHandler).

GateWorker

GateWorker is an abstract class that provides behavior shared by the worker of each endpoint.
GateWorker also maintains state that is shared by its descendants. This state is primarily the following five
caches:

e PluginHash

« DocumentHash

» PipelineHash

» ProcessingResourceHash
o CorpusHash

Each of these binds a name (provided by the client) with a corresponding instance in GATE.

Each instance of a GateWorker descendant inherits a returnResponse. This is is a HashMap that
contains an object that is ultimate returned to the client in the response of each successful https request.

CleanupWorker

An instance of CleanupWorker resets the shared caches of GateWorker and invokes cleanup methods in
GATE for those instances that require it.

CorpusWorker

An instance of CorpusWorker provides behavior for creating, adding documents to, and clearing a GATE
corpus.

DocumentWorker

4710

gated_reference.md 7/6/2023

An instance of DocumentWorker provides behavior for creating, loading, and accessing properties of a
GATE document.

DocumentWorker uses a helper class named DocumentWrapper.
« DocumentWrapper

DocumentWrapper is a helper class with static methods that provide access to the GATE factory classes
needed to create and load instances of GATE Document.

EchoWorker
An instance of EchoWorker echoes the value of its text query parameter.
HelloWorker

An instance of HelloWorker adds a binding with key hello and value Hello World to its
returnResponse

PipelineWorker

An instance of PipelineWorker provides behavior for creating, loading, storing, configuring, and running
a GATE pipeline.

PRWorker

An instance of PRWorker provides behavior for loading, reinitializing, and unloading a GATE
ProcessingResource.

GateDaemonException

Descendants of GateDaemonException are thrown to report specific validation errors detected by
GateDaemon itself. These are primarily thrown by instances of a GateWorker descendant.

Each instance of a GateDaemonException descendant thrown during an operation is caught by
GateHandler and reported to the client as a 200 response whose isSuccessful key has a value of
"false". The name, description, and stack for the specific failure is contained in the other bindings of the
failed 200 response.

A client of gated is expected to test for and handle such failures.
The name of the GateDaemonException descendant reflects the meaning of the error being reported.

o InvalidArtifactException
o InvalidCorpusNameException
e InvalidDocumentNameException
o InvalidDocumentPathException
o InvalidDocumentURLException
o InvalidFeaturePairException
e InvalidGroupException
e InvalidOperationException
5710

gated_reference.md 7/6/2023

e InvalidParameterNameException
o InvalidParameterTypeException
o InvalidParameterValueException
o InvalidPipelineNameException
o InvalidPipelinePathException
e InvalidPluginException

o InvalidPRNameException

o InvalidResourcePathException
e InvalidVersionException

e MissingCorpusException

» MissingDocumentException

» MissingPipelineException

» MissingPRException

o UnknownParameterTypeException

Using gated from the command line
The same endpoints used by the gate service can be accessed from the command line using an SSH shell.

Many endpoints of gated throw exceptions or fail in unexpected ways if a plugin is not loaded. The current
implementation and all examples in this document assume the use of the ANNIE plugin.

The gated daemon is a long-running service managed by systemd (systemctl on Rocky Linux). It is
therefore good practice to invoke the cleanup endpoint at the conclusion of a manual session where other
endpoints are exercised.

For convenience, the following wget command lines should be executed before and after exercising other
gated endpoints:

« Setup (load the ANNIE plugin):

wget "https://hoyo.zeetix.com:7899/v0/plugin/loadMavenPlugin?
group=uk.ac.gate.plugins&artifact=annie&version=9.1"

» Cleanup:
wget "https://hoyo.zeetix.com:7899/v@/cleanup"
The cleanup endpoint is idempotent, so it never hurts to run it before starting a new manual session.
This will cleanup if some earlier session was improperly terminated.

» Restartgated

In the unlikely event that the underlying JVM running GATE exhibits unexpected behavior, the
following command line kills and restarts the JVM:

6/10

gated_reference.md 7/6/2023

sudo systemctl restart gated

» Display gated status

The following command line shows the current status of gated:

sudo systemctl status gated

Here is the response (formatted for clarity):

® gated.service - The GATE daemon service
Loaded: loaded (/etc/systemd/system/gated.service; enabled; vendor
preset: disabled)
Active: active (running) since Thu 2023-06-15 15:34:45 UTC; 1lmin 1s
ago
Main PID: 2833 (java)
Tasks: 17 (limit: 99621)
Memory: 323.6M
CGroup: /system.slice/gated.service
L2833 /usr/bin/java
-classpath /opt/maven/boot/plexus-classworlds-2.6.0.jar
-Dclassworlds.conf=/opt/maven/bin/m2.conf
-Dmaven.home=/opt/maven
-Dlibrary.jansi.path=/opt/maven/lib/jansi-native
Dmaven.multiModuleProjectDirectory=/home/tms/backend/gate-daemon
org.codehaus.plexus.classworlds.launcher.Launcher
exec:java -
Dexec.mainClass=com.zeetix.gate.daemon.server.GateServer
-Dexec.args=7899

Jun 15 15:34:45 hoyo.zeetix.com systemd[1]: Started The GATE daemon

service.

Jun 15 15:34:47 hoyo.zeetix.com mvn[2833]: [INFO] Scanning for
projects...

Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO]

Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO] ------------------- <

com.zeetix.gate.daemon:server >-------------o-----

Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO] Building
ZeetixGateDaemon 0.0.0-SNAPSHOT

Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO] from pom.xml

Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO] --------------------

———————————— [jar J------cccmimm e -
Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO]
Jun 15 15:34:48 hoyo.zeetix.com mvn[2833]: [INFO] --- exec:3.1.0:java

(default-cli) @ server ---

7/10

gated_reference.md 7/6/2023

The following example endpoint is used to run a pipeline that has already been created and configured:

https://hoyo.zeetix.com:7899/v0/pipeline/runPipeline?
pipelineName=testpipeline

The following table uses the above example to illustrate the several parts of a gated endpoint, using the
above example.

Part Example Description
base https://hoyo.zeetix.com The https URL of the target system
port 7899 The designated port of the gated service
version v0 Version specifier for the endpoint
o A version designator followed by the name of the resource to
path pipeline be used
operation runPipeline The operation to perform on the designated resource
query pipelineName=testpipeline A sequence of one or more key-value pairs

Table 1: gated Endpoint Anatomy

For convenience, every endpoint in the gate project is a GET endpoint. Each successful response is a JSON-
encoded object containing the response from the GATE instance.

This means that any endpoint can be exercised using the "wget" command. Here is a command line string
that invokes the example endpoint:

wget "https://hoyo.zeetix.com:7899/v0/pipeline/runPipeline?
pipelineName=testpipeline"

NOTE: The URL is enclosed in a double-quote pair (") because many endpoints contain reserved characters
interpreted by the command line shell (such as bash).

Here is a command line that loads the ANNIE plugin, together with its response:

Command line:

wget "https://hoyo.zeetix.com:7899/v0/plugin/loadMavenPlugin?
group=uk.ac.gate.plugins&artifact=annie&version=9.1"

Response (pretty printed and reordered for clarity):

8/10

gated_reference.md

7/6/2023

{ "isSuccessful":"true",
"operation":"loadMavenPlugin",
"pluginGroup":"uk.ac.gate.plugins"
"pluginArtifact":"annie",
"pluginVersion":"9.1",

}

Path Operations Parameters (*=optional)
plugin
loadMavenPlugin group, artifact, version
cleanup
n.a. n.a.
document
loadFromURL documentURL
loadFromPath documentPath
getDocumentContent documentName
getAnnotationSetNames documentName
getAnnotationsForName documentName, annotationSetName*
cleanupDocument documentName
corpus
createCorpus corpusName
clearCorpus corpusName
addDocument corpusName, documentName
pr
loadPR prName, resourcePath
reinitPR prName
unloadPR prName
pipeline”

createPipeline

pipelineName

addPR

pipelineName, prName

setCorpus

pipelineName, corpusName

getParameterValue

pipelineName, prName, parameterName

9/10

gated_reference.md 7/6/2023

Path Operations Parameters (*=optional)

pipelineName, prName, parameterName, parameterValue*,
setParameterValue

parameterType
runPipeline pipelineName
storePipelineToFile pipelineName, pipelinePath
loadPipelineFromFile pipelineName, pipelinePath

Table 2: gated Endpoints

NOTE: The parameterValue is optional for the vO/pipeline endpoint so that a parameter value can be
set to null. This is accomplished by providing values for the pipelineName, prName, parameterName,
and parameterType.

10/10

